成人论坛

Factorising quadratic expressions

Factorising an expression means finding the factors that multiply together to give that expression.

A quadratic expression is one that has an 鈥槼媛测 term as its highest power.

\(\mathbf {x^2}\), \(\mathbf {2x^2 -3x}\), \(\mathbf {x^2 - 9}\) and \(\mathbf {x^2 + 5x + 6}\) are all quadratic expressions.

Some quadratic expressions cannot be factorised.

Back to top

Factorising quadratic expressions of the form \(\mathbf {x^2 + bx + c}\)

To find a method for factorising an expression such as \(\mathbf {x^2 + 5x + 6}\), look at how that expression was arrived at by expanding two brackets.

(x + 2)(x + 3) = x(x + 3) + 2(x + 3) 		= x2 + 3x + 2x + 6 		= x2 + 5x + 6

There are three terms in the expanded expression:

First term:
虫虏

Second term:
sum of +2x and +3x

Third term:
product of +2 and +3

This information gives us a method for factorising.

Back to top

Examples

Factorise \(\mathbf {x^2 + 2x 鈥 15}\):

To Factorise:

  • Find two numbers whose sum is +2 and whose product is 鈥15

The product is minus 15, so one of factors must be negative.

The numbers needed are either:

+5 and -3 or -5 and +3 As the sum is positive, the pair with the higher + value is the one to choose i.e.
+5 and -3

  • Write down the factors:

\(\mathbf {x^2 + 2x 鈥 15 = (x + 5)(x 鈥 3)}\)

  • Answer:
    \(\mathbf {x^2 + 2x 鈥 15 = (x + 5)(x 鈥 3)}\)
    \(\mathbf {(x - 3)(x + 5)}\) is also a correct answer. The order of the factors does not matter.
Back to top

Question

Factorise \(虫虏 + 5x 鈥 24\)

Back to top

Example

Factorise 虫虏 - 9x + 20

Solution

Identify the product and sum of the two key values that we need to find.

  • Product = +20

  • Sum = - 9

    • -4 and -5 add to give -9 and multiply to give +20
  • The factors are (x - 4) and (x - 5)

Answer: 虫虏 - 9x + 20 = (x - 4)(x - 5)

Back to top

Question

Factorise 虫虏 - 17x + 70

Back to top

Factorising expressions of the form 虫虏-a虏 (difference of two squares)

Expressions such as 虫虏-a虏 can be factorised using the difference of two squares method.

To understand how this works, look at the result when (x + 5)(x 鈥 5) is expanded.

(x + 5)(x 鈥 5) = x(x -5) + 5(x 鈥 5) = 虫虏 鈥 5x + 5x 鈥 25 Since = 虫虏鈥 25 Expanding (x + 5)(x 鈥 5) gives 虫虏 鈥 25

The inverse of this means that 虫虏 鈥 25 factorises to give (x + 5)(x 鈥 5)

  • Note that in the expression 虫虏 鈥 25 x is squared
  • 25 = 5虏 and there is a minus sign in between so we have the difference of two squares!

In general, 虫虏 鈥 a虏 can be factorised to give (x + a)(x 鈥 a)

Back to top

Both 虫虏 and 100 (10虏) are squares and there is a - sign in between.

Use the difference of two squares method - DOTS.

The factors can be written down without any further working.

虫虏 鈥 100 = 虫虏 鈥 10虏

= (x + 10)(x 鈥 10)

Back to top

Question

Factorise 虫虏 - 49

Back to top

Example

Factorise 9 - 虫虏

DOTS can still be used here 鈥 the expression does not have to start with 鈥槼媛测

9 - 虫虏 = 3虏 - 虫虏

Factors are (3 + x)(3 鈥 x)

Answer:
9 - 虫虏 = (3 + x)(3 鈥 x)

Difference of two squares (DOTS) often appears on exams

Back to top

Test yourself

Back to top